Next Generation Creep-Free Bearing

Development focus or purpose of development
Improve creep resistance for all internal and external load conditions

Features or Background

Features

- Optimised Ring Rigidity
 Prevent creep by reducing the race deformation which is from one-directional loading.
 Countermeasure of creep mode I

- Optimised Internal Specifications
 Reduce dynamic torque which causes corotation.
 Countermeasure of creep mode III

- Optimised O-ring’s Retention Force
 Prevent creep which is from rotating load and corotation.
 Countermeasure of creep mode II, III

- Improve Assembly Performance
 Easy assembling compared with mechanical fastening methods, such as flanged.

Creep Mode

Mode I: One-directional Loading

The rotating direction of the outer ring due to the creep is the same as the inner ring rotating direction.

Creep due to the undulating deformation of outer ring by rolling element load
Mode II: Rotating Load

The rotating direction of the outer ring due to the creep is the opposite to the inner ring rotating direction.

\[(r + c/2) \]

\[([\text{inner circumferential length of housing}] - [\text{outer circumferential length of outer ring}]) = nc \]

Creep due to difference of circumferential length between housing and outer ring

Mode III: Corotation

The rotating direction of the outer ring due to the corotation is the same as the inner ring rotating direction.

Corotation of the outer ring due to the friction force between rolling element and raceway.

Creep due to the dynamic torque

Measurement Result of Allowable Imbalance Load [Mode II]

Approximate five times improvement

<table>
<thead>
<tr>
<th>Allowable Imbalance Load [N]</th>
<th>Conventional</th>
<th>Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>600</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>