

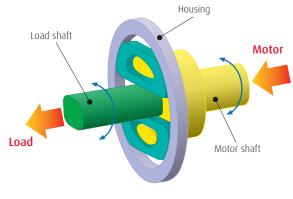
TECHNICAL INSIGHT

A PUBLICATION OF NSK EUROPE

Locking Clutch

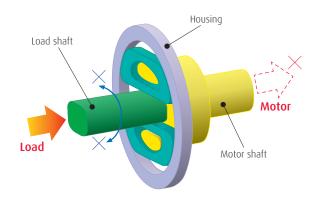
Development Objectives

Transmits torque from the motor, prevents reverse torque from the load shaft

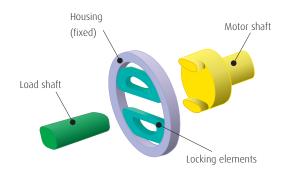

Ball Screw + Locking Unit

- > Low driving power due to high positive efficiency
 - ightarrow Low power consumption / Motor downsizing
- > Energy for maintaining position not required
- \rightarrow Low power consumption

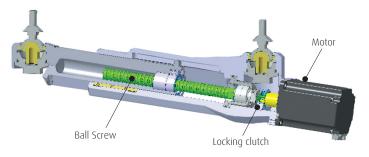
General Description and Features of the Product (Structure and Operating Principles)


Function

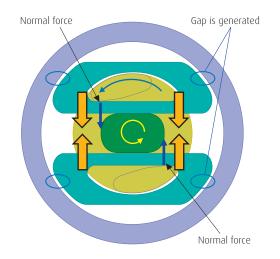
Motor shaft rotation


Transmits torque from the motor

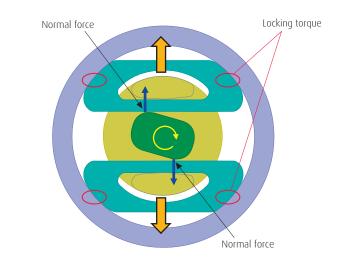
Load shaft rotation


Prevents reverse torque from the load shaft

Structure


Application

Linear actuator (Ball Screw + Locking clutch)



Operating principle

Motor shaft rotation

Load shaft rotation

- 1. Motor shaft rotates
- 2. Locking elements move to center by normal forces
- 3. Gap is generated between the locking element and the housing
- 4. Rotating torque is transmitting from Motor shaft to Load shaft via the locking elements

- 1. Load shaft rotates (by reverse input)
- 2. A pair of Locking elements move out by the normal forces
- 3. The Locking elements contact the housing i.d.
- 4. Locking torque is generated by the contacting points
- 5. Load shaft gets locked in this position