MEGATORQUE® MOTOR SYSTEM
User’s Manual
(EDC Driver Unit CC-Link Option)

M-E099DC0C2-157

NSK Ltd.
Document Number: C20157-02
Limited Warranty

NSK Ltd. warrants its products to be free from defects in material and/or workmanship which NSK Ltd. is notified of in writing within, which comes first, one (1) year of shipment or 2400 total operation hours. NSK Ltd., at its option, and with transportation charges prepaid by the claimant, will repair or replace any product which has been proved to the satisfaction of NSK Ltd. to have a defect in material and/or workmanship.

This warranty is the sole and exclusive remedy available, and under no circumstances shall NSK Ltd. be liable for any consequential damages, loss of profits and/or personal injury as a result of claim arising under this limited warranty. NSK Ltd. makes no other warranty express or implied, and disclaims any warranties for fitness for a particular purpose or merchantability.

Copyright 2011 by NSK Ltd., Tokyo, Japan

All rights reserved.

No part of this publication may be reproduced in any form or by any means without permission in writing from NSK Ltd.

NSK Ltd. reserves the right to make changes to any products herein to improve reliability, function or design without prior notice and without any obligation.

NSK Ltd. does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its present patent nor the rights of others.

Patents issued and patents pending.

“MEGATORQUE” is a registered trademark of NSK Ltd. in Japan and that of NSK Corp. in the United States of America.
## Contents

1. Introduction ----------------------------------- 1-1
   1.1. Notes for Users ----------------------------- 1-2
      1.1.1. Notes for Safety ------------------------ 1-2

2. Specifications --------------------------------- 2-1
   2.1. General Specifications---------------------- 2-1
   2.2. Specifications of Hardware Interface-------- 2-1
      2.2.1. External Dimensions ------------------- 2-1
      2.2.2. CN2: Control Input/Output Signal Connector
             2.2.2.1. CN2 Pin-Out ------------------- 2-4
             2.2.2.2. CN2 Signal List --------------- 2-5
      2.2.3. CN6: Interface Connector --------------- 2-6
             2.2.3.1. C6 Pin-Out ------------------- 2-6
      2.2.4. SW1 • SW2: Station Number Switch ------ 2-7
      2.2.5. SW3: Baud Rate Setting Switch -------- 2-7
      2.2.6. SW4: Terminal Resistor Switch --------- 2-7
      2.2.7. LED Status Monitor (SD, RD, RUN and ERR)
             ---------------------------------------- 2-8
      2.2.8. Wiring Example-------------------------- 2-9
   2.3. Software Interface Specification ------- 2-10
      2.3.1. Remote Input/Output--------------------- 2-10
      2.3.2. Remote Register------------------------- 2-12

3. Operation ------------------------------------- 3-1
   3.1. Operation Mode and Input/Output ----------- 3-1
   3.2. Change of Operation Mode ----------------- 3-2
   3.3. Servo-on in the Maintenance Mode --------- 3-2
   3.4. Monitoring Control Input/Output --------- 3-4
      3.4.1. Monitoring the State of Remote Inputs/Outputs:
             Monitor IO4 -------------------------- 3-5
      3.4.2. Monitoring State of the CC-Link Interface:
             Monitor BS--------------------------- 3-6
   3.5. Function Assignment of Control Inputs/Outputs-- 3-7
      3.5.1. Function of Control Inputs-------------- 3-8
      3.5.2. Function of Control Outputs------------ 3-10
      3.5.3. Editing Control Inputs/Outputs-------- 3-12
             3.5.3.1. Editing Control Inputs----- 3-12
             3.5.3.2. Editing Control Outputs--- 3-15
             3.5.3.3. Masking the Function of Control
                      Inputs/Outputs ----------------- 3-18
             3.5.3.4. Forcible Change in Setting Control
                      Output Port Function --------------- 3-19

4. Alarm and Warning -------------------------- 4-1
   4.1. Cause and Remedy of Alarm and Remedy ----- 4-1
      4.1.1. C4: Fieldbus Error ------------------- 4-1
      4.1.2. C5: Fieldbus Warning ---------------- 4-2
1. Introduction

- This manual describes an option of the Megatorque Motor System that consists of the EDC Driver Unit CC-Link option. Please refer to the user’s manual of the Megatorque Motor System (EDC Driver Unit System) for other details.

- Connection of the optional EDC Driver Unit to the CC-Link network will make you utilize its control Input/Output functions through the master station.

- For your safety, please be sure to read the user’s manual thoroughly before operating the Megatorque Motor System.

1.1. Notes for Users

1.1.1. Notes for Safety

- For your safety, you should read this manual thoroughly and understand the contents before operating the Megatorque Motor System.

- The following notices are added to give particular emphasis on the safety precautions in this manual.

⚠️ **Danger**: A matter that might cause serious injuries.

⚠️ **Warning**: A matter that might result in injuries.

⚠️ **Caution**: A matter that might result in the breakdown of equipment into which the Motor is installed or the break down of the mechanism surrounding the Motor.
2. Specifications

2.1. General Specifications

Table 2-1: General specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol</td>
<td>CC–Link Ver.1.10</td>
</tr>
<tr>
<td>Number of slave stations (Type of station)</td>
<td>2 Remote device stations</td>
</tr>
<tr>
<td>Number of addressable remote input ports</td>
<td>17 16 ports are available for any function assignment</td>
</tr>
<tr>
<td>Number of addressable remote output ports</td>
<td>8 7 ports are available for any function assignment</td>
</tr>
<tr>
<td>Remote register output</td>
<td>2 words Enables to configure the contents of output</td>
</tr>
</tbody>
</table>

2.2. Specifications of Hardware Interface

2.2.1. External Dimensions

Fig. 2-1: EDC Driver Unit compatible with CC-Link Network
(Motor type: PS1006, PS1012, PS1018, PS3015 and PS3030)
Fig. 2-2: EDC Driver Unit compatible with CC-Link Network
(Motor type: PS3060 and PS3090)
2.2.2. CN2: Control Input/Output Signal Connector

- The table below shows the connectors for CN2.

<table>
<thead>
<tr>
<th>Table 2-2: Connector list</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector of Driver Unit</td>
</tr>
<tr>
<td>Mating connector</td>
</tr>
</tbody>
</table>

◊ An optional cable set (M-E011DCCN1-001) with the mating connector to the CN2 I/O connector of the Driver Unit is available (Sold separately).

- The followings are wiring precautions for the connector CN2.
  1) Use a shielded cable for wiring of the CN2 connector.
  2) These cables should be laid separately from the main power line.
  3) Connect the one end of the shielded cable to the frame ground.

⚠️ Caution: Check for a wiring mistake in the polarity of external power supply, and a shorting between connector pins.

⚠️ Caution: Never connect the idle pins that are instructed as “Do not connect.” Do not make them idle at the master controller (PLC, etc) side, after you have connected all pins at the CN2 connector side.

- Connection of an idle pin that is instructed not to connect may make the Driver Unit easily affected by external noise, and thus likely causing its malfunction or breakdown.
2. Specification

2.2.2.1. CN2 Pin-Out

- Figure 2-3 below shows the shipping set of the pin-out arrangement of the CN2 connector.

- You may change the function assignment of each signal port.
  (Except some ports that are dedicated to a certain function)
  ◊ Change to an extended capability port.
  ◊ Transfer an assigned function to other port.
  ◊ Mask the function of unused port.

- The each port of the CN2 connector is assigned to the same port name as the remote Input/Output of the CN6 interface connector, and the ports of both connectors are corresponding each other.

⚠ Caution : A change of function assignment of a port of the CN2 connector forces the function change to the remote Output/Input of the corresponding port.

Fig. 2.3: CN2 pin-out

- PI0 and PO0 ports are dedicated to the safety function Input and Output. They have following restrictions respectively.
  ◊ You cannot change the function of the port PI0 (Pin number 3: Input EMST (Emergency stop)). You may only set the input port and the stability timer to it.
  ◊ You can only exchange the function of the PO0 (Pin number 8: Output DRDY (Drive Unit ready)) with the function Output NRM (Normal). You cannot set the output logic and the stability timer to it.
2.2.2.2. CN2 Signal List

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Port code</th>
<th>Signal code</th>
<th>Contact logic</th>
<th>Signal function</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>DC24</td>
<td>--</td>
<td>24 VDC external power supply</td>
<td>External power supply for input signal</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
<td>Do not connect</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>PI0</td>
<td>EMST</td>
<td>Normally closed</td>
<td>Emergency stop</td>
<td>Clears warning</td>
</tr>
<tr>
<td>4</td>
<td>PI1</td>
<td>ACLR</td>
<td>Normally open</td>
<td>Alarm clear</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>PI2</td>
<td>OTP</td>
<td>Normally closed</td>
<td>Travel limit, + direction</td>
<td>If OTP input goes active, the Motor servo is locked in the CW only</td>
</tr>
<tr>
<td>6</td>
<td>PI3</td>
<td>OTM</td>
<td>Normally closed</td>
<td>Travel limit, - direction</td>
<td>If OTM input goes active, the Motor servo is locked in the CCW only</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>-</td>
<td>Do not connect</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>PO0</td>
<td>DRDY</td>
<td>Positive</td>
<td>Driver Unit ready</td>
<td>Reports that the Motor is ready to rotate (Those pins open when Motor is not ready, or an alarm occurs)</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>-</td>
<td>Do not connect</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>COM</td>
<td>-</td>
<td>Output signal COMMON</td>
<td>Common for output signal</td>
</tr>
</tbody>
</table>

⚠️ Caution: Be sure to follow the operation manual when your Megatorque Motor System is a custom-made version and the function of Input/Output signals are specially arranged.

⚠️ Caution: Never connect the pins indicated as “Do not connect” Be sure to connect these pins of the master controller (PLC, etc) side after you have connected all pins of the CN2 connector. Otherwise, it may result in a malfunction or breakdown of the system.
2.2.3. CN6: Interface Connector

- The CN6 connector interfaces with the CC—Link network.
- The followings are the reference for the connectors that are used for the CN6 connector.

**Table 2-4: CN6 mating connectors**

<table>
<thead>
<tr>
<th>Connector, Driver Unit side</th>
<th>Phoenix Contact Gmbh, &amp; Co. MSTB2,5/5-GF-5,08AU or equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mating connector</td>
<td>Phoenix Contact Gmbh, &amp; Co. MSTB2,5/5-STF-5,08AU or equivalent</td>
</tr>
</tbody>
</table>

- Table 2-5 below shows the reference data for the mating connectors.

**Table 2-5: Reference data of the mating connector**

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable to be used (single connection)</td>
<td>0.2 to 2.5 [mm$^2$] (twisted) (AWG24 to 12)</td>
</tr>
<tr>
<td>Cable to be used (double connection)</td>
<td>0.2 to 1.5 [mm$^2$] (twisted)</td>
</tr>
<tr>
<td>Removed coat length</td>
<td>7 [mm]</td>
</tr>
<tr>
<td>Machine screws to be used</td>
<td>M3</td>
</tr>
<tr>
<td>Tightening torque</td>
<td>0.5 to 0.6 [N·m]</td>
</tr>
</tbody>
</table>

2.2.3.1. CN6 Pin-Out

**Table 2-6: CN6 pin-out**

<table>
<thead>
<tr>
<th>Top of the Driver Unit</th>
<th>Pin No.</th>
<th>Signal code</th>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FG</td>
<td>Frame ground</td>
<td>Connect the frame ground</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SLD</td>
<td>Shield</td>
<td>Connect the shielded cable (Frame ground cable)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>DA</td>
<td>Data A</td>
<td>Connect the data A cable</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>DB</td>
<td>Data B</td>
<td>Connect the data B cable</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>DG</td>
<td>Data ground</td>
<td>Connect the data ground cable</td>
<td></td>
</tr>
</tbody>
</table>
2.2.4. SW1•SW2: Station Number Switch

- These rotary switches set the station number from 1 to 64.
  The SW1 sets the tens place of the number, while the SW2 switch sets the ones place.

**Table 2-7: Station number switch**

<table>
<thead>
<tr>
<th>Driver Unit’s upper side</th>
<th>SW1</th>
<th>SW2</th>
<th>Station number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>(Never set)</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>1 (Shipping set)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>4</td>
<td>64</td>
</tr>
</tbody>
</table>

2.2.5. SW3: Baud Rate Setting Switch

- The switch sets the baud rate.

**Table 2-8: Baud rate setting switch**

<table>
<thead>
<tr>
<th>Driver Unit’s upper side</th>
<th>SW3</th>
<th>Baud rate [bps]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>156k</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>625k</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.5M</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5M</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>10M (Shipping set)</td>
</tr>
<tr>
<td></td>
<td>5 - 9</td>
<td>Never set</td>
</tr>
</tbody>
</table>

2.2.6. SW4: Terminal Resistor Switch

- Set the terminal resistor when connecting the Driver Unit to the end of the network.
  ◊ Select the resistor value in accordance with the characteristic impedance of the cable.
- Be sure to turn off the power of the Driver Unit when setting the terminal resistor.

**Table 2-9: Terminal resistor setting switch**

<table>
<thead>
<tr>
<th>Driver Unit’s upper side</th>
<th>SW4</th>
<th>Terminating resistance</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Up</td>
<td>130 [Ω]</td>
<td>The terminal resistor is on (When the characteristic impedance of the cable is 130 [Ω])</td>
</tr>
<tr>
<td></td>
<td>Neutral</td>
<td>None</td>
<td>The terminal resistor is off (Shipping set)</td>
</tr>
<tr>
<td></td>
<td>Down</td>
<td>110 [Ω]</td>
<td>The terminal resistor is on (When the characteristic impedance of the cable is 110 [Ω])</td>
</tr>
</tbody>
</table>
2.2.7. LED Status Monitor (SD, RD, RUN and ERR)

- The monitor indicates the status of connection and communication with the network.
- When the communication status is normal, the indicators RUN, RD and SD are on, and that of ERR is off (In some baud rate, the RD and SD indicators seem like blinking).

Table 2-10: LED status monitor

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD</td>
<td></td>
<td>On: In the middle of transmitting data</td>
</tr>
<tr>
<td>RD</td>
<td>Green</td>
<td>On: In the middle of receiving data</td>
</tr>
<tr>
<td>RUN</td>
<td></td>
<td>On: Executing the data link. The unit is normal Off: Not linked to the network. Carrier detection NG, Time-Over, Resetting</td>
</tr>
<tr>
<td>ERR</td>
<td>Red</td>
<td>On: CRC error, SW1 and 2 (Station number) setting error, or SW3 (Baud rate) setting error Off: Communicating normally or Resetting hardware Blinking: The switch setting (SW1, 2 and 3) is altered</td>
</tr>
</tbody>
</table>

Table 2-11: Monitoring pattern

<table>
<thead>
<tr>
<th>SD</th>
<th>RD</th>
<th>RUN</th>
<th>ERR</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>✷</td>
<td>●</td>
<td>●</td>
<td>○</td>
<td>Communicating normally</td>
</tr>
<tr>
<td>✷</td>
<td>●</td>
<td>●</td>
<td>*</td>
<td>Communicating normally, with occasional CRC error</td>
</tr>
<tr>
<td>✷</td>
<td>●</td>
<td>●</td>
<td>**</td>
<td>Baud rate and/or station number setting are altered at the time of power on. * LED flickers at intervals of every 0.4 [s]</td>
</tr>
<tr>
<td>○</td>
<td>●</td>
<td>●</td>
<td>*</td>
<td>Transferred data become “CRC Error” and thus unable to respond</td>
</tr>
<tr>
<td>○</td>
<td>●</td>
<td>●</td>
<td>○</td>
<td>No data transmission to the Driver Unit</td>
</tr>
<tr>
<td>*</td>
<td>●</td>
<td>○</td>
<td>*</td>
<td>Though the polling is responding, the refresh receiving has a CRC error</td>
</tr>
<tr>
<td>○</td>
<td>●</td>
<td>○</td>
<td>*</td>
<td>Cannot respond as the data to the Driver Unit has a CRC error</td>
</tr>
<tr>
<td>*</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>The communication link is not active</td>
</tr>
<tr>
<td>○</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>No data sent to the Driver Unit, or impossible to receive the data</td>
</tr>
<tr>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>Impossible to receive the data. Power shutdown, or the hardware is in the middle of resetting</td>
</tr>
<tr>
<td>○</td>
<td>●/ ○</td>
<td>○</td>
<td>●</td>
<td>Setting error on the baud rate or station number</td>
</tr>
</tbody>
</table>

- The SD monitor is blinking quickly, and thus it occasionally seems like as if it is on depending on the communication state.
2.2.8. Wiring Example

- Refer to “Figure 2-4: Wiring example” below for wiring the Drive Unit to the CC-Link.
  ◊ Be sure to use a cable dedicated to the CC-Link.
  ◊ The wiring order is not necessarily the same order of station numbers.

Fig. 2-4: Wiring example

- Connect the shielded wire of the CC-Link dedicated cable to the SLD terminal of CN6 connector. The SLD terminal is connected to the housing of the Driver Unit through the FG terminal and thus, the shielded wire is grounded through the grounding terminal of the Driver Unit (Heatsink).
- Connect the terminating resistor between the DA and DB terminal of the both end units of the network.
  ◊ The SW4 switch sets the terminating resistor for the EDC Driver Unit.
2.3. Software Interface Specification

2.3.1. Remote Input/Output

- Table 2-12 “Remote Input/Output” on the next page shows the function of Input/Output of the CN6 interface connector (Shipping set).

- Excluding some ports, you may change the function assignment to the remote Input/Outpu ports. Please refer to “3.5 Function Assignment of Control Input/Output” for the details of Input/Output signal logic and the function that can be assigned to each Input/Output port.
  ◊ Replaces an assigned function with an extended function.
  ◊ A previously assigned function may be set to other port.
  ◊ Masks a unused port.

- The same port name of the CN2 control I/O connector is assigned to the corresponding port of the remote I/O connector and the I/O function of each port is also corresponding each other.

⚠️ Caution: Pay special attention when changing the function assignment of Remote Input/Output port because that of the corresponding port of the CN2 signal connector changes its function also.
### Table 2-12: Remote Input/Output

<table>
<thead>
<tr>
<th>Output Port</th>
<th>Port code</th>
<th>Signal code</th>
<th>Function Description</th>
<th>Input Port</th>
<th>Port code</th>
<th>Signal code</th>
<th>Function Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RXm0</td>
<td>PO0</td>
<td>DRDY</td>
<td>Reports that the Motor is ready for the operation</td>
<td>RYm0</td>
<td>PI0</td>
<td>EMST</td>
<td>Interrupts the positioning and stops with the dynamic brake</td>
</tr>
<tr>
<td>RXm1</td>
<td>PO1</td>
<td>WRN</td>
<td>Alerts warning</td>
<td>RYm1</td>
<td>PI1</td>
<td>ACLR</td>
<td>Clears warning</td>
</tr>
<tr>
<td>RXm2</td>
<td>PO2</td>
<td>OTPA</td>
<td>Over travel limit (+) (Soft and hard ware limit switch)</td>
<td>RYm2</td>
<td>PI2</td>
<td>–</td>
<td>Reserved *¹</td>
</tr>
<tr>
<td>RXm3</td>
<td>PO3</td>
<td>OTMA</td>
<td>Over travel limit (-) (Soft and hard ware limit switch)</td>
<td>RYm3</td>
<td>PI3</td>
<td>–</td>
<td>Reserved *¹</td>
</tr>
<tr>
<td>RXm4</td>
<td>PO4</td>
<td>SVST</td>
<td>Reports the state of the servo</td>
<td>RYm4</td>
<td>PI4</td>
<td>SVON</td>
<td>Turns the servo on</td>
</tr>
<tr>
<td>RXm5</td>
<td>PO5</td>
<td>BUSY</td>
<td>Reports the operation state</td>
<td>RYm5</td>
<td>PI5</td>
<td>RUN</td>
<td>Starts the program operation specified by the PRG input</td>
</tr>
<tr>
<td>RXm6</td>
<td>PO6</td>
<td>IPOS</td>
<td>Reports the conditions in position error and positioning</td>
<td>RYm6</td>
<td>PI6</td>
<td>STP</td>
<td>Stops positioning operation</td>
</tr>
<tr>
<td>RXm7</td>
<td>PO7</td>
<td>NEARA</td>
<td>Reports that the Motor is approaching the target position</td>
<td>RYm7</td>
<td>PI7</td>
<td>PRG0</td>
<td>A combination of 1 and 0 (ON/OFF) of the “Internal program channel selection” selects a channel to be executed (Channel 0 - 255)</td>
</tr>
<tr>
<td>RXm8</td>
<td>–</td>
<td>–</td>
<td>(Reserved)</td>
<td>RYm8</td>
<td>PI8</td>
<td>PRG1</td>
<td></td>
</tr>
<tr>
<td>RXm9</td>
<td>–</td>
<td>–</td>
<td>(Reserved)</td>
<td>RYm9</td>
<td>PI9</td>
<td>PRG2</td>
<td></td>
</tr>
<tr>
<td>RXmA</td>
<td>–</td>
<td>–</td>
<td>(Reserved)</td>
<td>RYmA</td>
<td>PI10</td>
<td>PRG3</td>
<td></td>
</tr>
<tr>
<td>RXmB</td>
<td>–</td>
<td>–</td>
<td>(Reserved)</td>
<td>RYmB</td>
<td>PI11</td>
<td>PRG4</td>
<td></td>
</tr>
<tr>
<td>RXmC</td>
<td>–</td>
<td>–</td>
<td>(Reserved)</td>
<td>RYmC</td>
<td>PI12</td>
<td>PRG5</td>
<td></td>
</tr>
<tr>
<td>RXmD</td>
<td>–</td>
<td>–</td>
<td>(Reserved)</td>
<td>RYmD</td>
<td>PI13</td>
<td>PRG6</td>
<td></td>
</tr>
<tr>
<td>RXmE</td>
<td>–</td>
<td>–</td>
<td>(Reserved)</td>
<td>RYmE</td>
<td>PI14</td>
<td>PRG7</td>
<td></td>
</tr>
<tr>
<td>RXmF</td>
<td>–</td>
<td>–</td>
<td>(Reserved)</td>
<td>RYmF</td>
<td>PI15</td>
<td>JOG</td>
<td>Starts and stops a jog operation</td>
</tr>
<tr>
<td>RX(m+1)0</td>
<td>–</td>
<td>–</td>
<td>(Reserved)</td>
<td>RY(m+1)0</td>
<td>PI16</td>
<td>DIR</td>
<td>Specifies the direction of a jog operation</td>
</tr>
<tr>
<td>RX(m+1)1 to RX(m+2)F</td>
<td>–</td>
<td>–</td>
<td>(Reserved)</td>
<td>RY(m+1)1 to RY(m+2)F</td>
<td>–</td>
<td>–</td>
<td>(Reserved)</td>
</tr>
<tr>
<td>RX(m+3)0 to RX(m+3)7</td>
<td>–</td>
<td>–</td>
<td>(Reserved)</td>
<td>RY(m+3)0 to RY(m+3)7</td>
<td>–</td>
<td>–</td>
<td>(Reserved)</td>
</tr>
<tr>
<td>RX(m+3)8</td>
<td>–</td>
<td>–</td>
<td>Flag for processing an initial data (Not used)</td>
<td>RY(m+3)8</td>
<td>–</td>
<td>–</td>
<td>Flag for completion of initial data processing. (Not used)</td>
</tr>
<tr>
<td>RX(m+3)9</td>
<td>–</td>
<td>–</td>
<td>Flag for “End of initial data setting” (Not used)</td>
<td>RY(m+3)9</td>
<td>–</td>
<td>–</td>
<td>Flag for initial data setting (Not used)</td>
</tr>
<tr>
<td>RX(m+3)A</td>
<td>–</td>
<td>–</td>
<td>Flag for positioning state (Not used)</td>
<td>RY(m+3)A</td>
<td>–</td>
<td>–</td>
<td>Flag for requesting error reset (Not used)</td>
</tr>
<tr>
<td>RX(m+3)B</td>
<td>–</td>
<td>–</td>
<td>The remote station is ready</td>
<td>RY(m+3)B</td>
<td>–</td>
<td>–</td>
<td>(Reserved)</td>
</tr>
<tr>
<td>RX(m+3)C to RX(m+3)F</td>
<td>–</td>
<td>–</td>
<td>(Reserved)</td>
<td>RY(m+3)C to RY(m+3)F</td>
<td>–</td>
<td>–</td>
<td>(Reserved)</td>
</tr>
</tbody>
</table>

*¹: The shipping set of PI2 and PI3 ports is assigned to signals of OTP and OTM respectively. These are the dedicated input signals from the CN2: control I/O connector. An input from the CC-Link to these OTP and OTM function ports shall become invalid.

- **Function Assignment**: The PI0 and PO0 are dedicated ports for the signals fundamental to the safety function. There are following restrictions respectively.
  - You cannot change the function EMST (Emergency stop) assigned to the Port PI0 (RYm0).
  - The Output DRDY (Driver Unit Ready) assigned to the Port PO0 (RXm0) is only interchangeable with the function of NRM (Normal).

- **Logic** : Refer to “3.5 Function Assignment of Control Input/Output” for the logic of each function.
2.3.2. Remote Register

- Table 2-13 “Remote Register” shows the function of remote register of the CN6 interface connector.

- Remote register outputs data monitoring, such as a coordinate data, using two words of remote register RWr.
  - The data consists of 32 bit integer with the sign.

**Table 2-13: Remote Register**

<table>
<thead>
<tr>
<th>Output</th>
<th>Function</th>
<th>Input</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>RWrm+0</td>
<td>Monitor data set by the POD parameter (LSW) to (MSW)</td>
<td>RWwm+0</td>
<td></td>
</tr>
<tr>
<td>RWrm+1</td>
<td>(Reserved)</td>
<td>RWwm+1</td>
<td></td>
</tr>
<tr>
<td>RWrm+2</td>
<td>Monitor data set by the POD parameter (LSW) to (MSW)</td>
<td>RWwm+2</td>
<td></td>
</tr>
<tr>
<td>RWrm+3</td>
<td>(Reserved)</td>
<td>RWwm+3</td>
<td></td>
</tr>
<tr>
<td>RWrm+4</td>
<td>(Reserved)</td>
<td>RWwm+4</td>
<td></td>
</tr>
<tr>
<td>RWrm+5</td>
<td>(Reserved)</td>
<td>RWwm+5</td>
<td></td>
</tr>
<tr>
<td>RWrm+6</td>
<td>(Reserved)</td>
<td>RWwm+6</td>
<td></td>
</tr>
<tr>
<td>RWrm+7</td>
<td>(Reserved)</td>
<td>RWwm+7</td>
<td></td>
</tr>
</tbody>
</table>

- The output is set by the parameter POD (Polling data).
  - The parameter POD must accompany the name of monitor that is outputting data.

**Table 2-14: Parameter related to the remote register output**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Function</th>
<th>Default</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>POD</td>
<td>Polling data</td>
<td>TP</td>
<td>Set POD + Monitor name</td>
</tr>
</tbody>
</table>
The following show an example to output the data of current velocity to the CC-Link.

1) Monitor TV (Current velocity readout) reports the current velocity of the Motor. Set “Monitor TV” to the parameter POD (Polling data) to output to the CC-Link.

   ![POD TV setup](image)

2) Monitor TV reports the current velocity in units of a thousandth of \([s^{-1}]\) as described in the “Megatorque Motor System User’s Manual (EDC Driver Unit System)”.

   ♦ The current velocity is given in the units of a thousandth as –5.000 when the Motor is rotating to the minus direction at the velocity of 5 \([S^{-1}]\).

**Fig. 2-5: Description of “Monitor TV” (Megatorque Motor System User’s Manual [EDC Driver Unit System])**

3) The decimal point is abbreviated when outputting to the CC-Link.

   When the Motor is rotating at –5.000, -5000 (FFFF EC78h in hexadecimal number) will be outputted. Table 2-15 below shows an example of the relation between the register address and the contents of an output.

**Table 2-15: Output example of the remote register (When outputting -5000)**

<table>
<thead>
<tr>
<th>Output</th>
<th>Function</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>RWrm+0</td>
<td>EC78h</td>
<td>RWwm+0</td>
</tr>
<tr>
<td>RWrm+1</td>
<td>FFFFh</td>
<td>RWwm+1</td>
</tr>
<tr>
<td>RWrm+2</td>
<td>(Reserved)</td>
<td>RWwm+2</td>
</tr>
<tr>
<td>RWrm+3</td>
<td></td>
<td>RWwm+3</td>
</tr>
<tr>
<td>RWrm+4</td>
<td></td>
<td>RWwm+4</td>
</tr>
<tr>
<td>RWrm+5</td>
<td></td>
<td>RWwm+5</td>
</tr>
<tr>
<td>RWrm+6</td>
<td></td>
<td>RWwm+6</td>
</tr>
<tr>
<td>RWrm+7</td>
<td></td>
<td>RWwm+7</td>
</tr>
</tbody>
</table>

\(m: A \text{ register number derived from the top station number}\)
3. Operation

3.1. Operation Mode and Input/Output

- There are two ways to input signals to the Driver Unit CN2: control Input/Output connector and remote input by the CN6: interface connector. There are two operation modes to receive those inputs exclusively.
  ◊ Fieldbus mode: The prompt of the Handy Terminal is “#”.
  ◊ Maintenance mode: The prompt of the Handy Terminal is “:”.
- The operation mode and format of Inpt/Output are shown in the Table 3-1 “Operation mode and composition of Input/Output” (The function assignment is the shipping set).
  ◊ The operative Inputs/Outputs of each operation mode are shown in the bold line boxes below.

<table>
<thead>
<tr>
<th>Input/Output</th>
<th>Fieldbus mode</th>
<th>Maintenance mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI0</td>
<td>EMST</td>
<td>RYm0</td>
</tr>
<tr>
<td>PI1</td>
<td>ACLR</td>
<td>RYm1</td>
</tr>
<tr>
<td>PI2</td>
<td>OTP</td>
<td>RYm2</td>
</tr>
<tr>
<td>PI3</td>
<td>OTM</td>
<td>RYm3</td>
</tr>
<tr>
<td>PI4</td>
<td>SVON</td>
<td>RYm4</td>
</tr>
<tr>
<td>PI5</td>
<td>RUN</td>
<td>RYm5</td>
</tr>
<tr>
<td>PI6</td>
<td>STP</td>
<td>RYm6</td>
</tr>
<tr>
<td>PI7</td>
<td>PRG0</td>
<td>RYm7</td>
</tr>
<tr>
<td>PI8</td>
<td>PRG1</td>
<td>RYm8</td>
</tr>
<tr>
<td>PI9</td>
<td>PRG2</td>
<td>RYm9</td>
</tr>
<tr>
<td>PI10</td>
<td>PRG3</td>
<td>RYmA</td>
</tr>
<tr>
<td>PI11</td>
<td>PRG4</td>
<td>RYmB</td>
</tr>
<tr>
<td>PI12</td>
<td>PRG5</td>
<td>RYmC</td>
</tr>
<tr>
<td>PI13</td>
<td>PRG6</td>
<td>RYmD</td>
</tr>
<tr>
<td>PI14</td>
<td>PRG7</td>
<td>RYmE</td>
</tr>
<tr>
<td>PI15</td>
<td>JOG</td>
<td>RYmF</td>
</tr>
<tr>
<td>PI16</td>
<td>DIR</td>
<td>RY(m+1)0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input/Output</th>
<th>Fieldbus mode</th>
<th>Maintenance mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO0</td>
<td>DRDY</td>
<td>RXm0</td>
</tr>
<tr>
<td>PO1</td>
<td>WRN</td>
<td>RXm1</td>
</tr>
<tr>
<td>PO2</td>
<td>OTPA</td>
<td>RXm2</td>
</tr>
<tr>
<td>PO3</td>
<td>OTMA</td>
<td>RXm3</td>
</tr>
<tr>
<td>PO4</td>
<td>SVST</td>
<td>RXm4</td>
</tr>
<tr>
<td>PO5</td>
<td>BUSY</td>
<td>RXm5</td>
</tr>
<tr>
<td>PO6</td>
<td>IPOS</td>
<td>RXm6</td>
</tr>
<tr>
<td>PO7</td>
<td>NEARA</td>
<td>RXm7</td>
</tr>
</tbody>
</table>

- In case of the fieldbus mode, take the input signals from the CN6 connector. For the maintenance mode, take them through the CN2 connector. However, there are following two exceptions.
  ◊ The port assigned to the Input EMST (Emergency stop) regards the Input of both CN2 and CN6 connectors as the “Emergency stop” signal. This means that the system gets in the emergency stop state by either one of the inputs.
◊ The ports assigned to the function of OTP/OTM (Over travel limit switch position) and HLS (Home position limit switch) only take the input from the CN2 connector regardless the operation mode.

- The output signals go to the both CN2 and CN6 connectors regardless the operation mode.

3.2. Change of Operation Mode

- The system starts with the fieldbus mode right after the power is turned on.
  ◊ When the system detects any abnormality related to the CC-Link, it starts up with the maintenance mode.

- The command CP (Control mode priority) changes the operation mode.

Fig. 3-1: Switching the operation mode

3.3. Servo-on in the Maintenance Mode

- It needs to activate the Input SVON (Servo on) to make the Motor servo on. This means the Input SVON of the CN6 : Interface connector must be set to 1.

- The CC-Link network would not be ready yet while the total system is in the middle of starting-up. In such a case, the Motor can be in the Servo-on state immediately by switching to the maintenance mode from the operation mode to set the polarity of the Input SVON to a normally closed contact.
  ◊ The change to the maintenance mode makes the inputs of the CN2 connector effective. While no port is assigned to the Input SVON for the CN2 connector, the SVON input is regarded always as OFF. However, the reverse of the port polarity forcibly turns ON the Input SVON.

- The following describe how to make the Motor SVON effective by the forcible activation of the Input SVON.

⚠ Danger : Be sure to wire the Input EMST (Emergency stop) so that immediate deactivation of the servo is possible.
1) Input the command MO (Motor off) to deactivate the Motor servo.

\[
\text{MO} \quad \#\_
\]

2) Set the parameter CP (Control priority) to the CP0 (Maintenance mode).

\[
\text{CP0} \quad :\_
\]

3) Specify the port number to which the Input SVON (Servo on) is assigned by the command PI (Edit input port) to readout the parameter FN (Port function).

(The SVON is assigned to the PI4 as the shipping set)

\[
\text{PI4} \quad \text{FNSVON;} \quad \text{AB0;} \quad \text{NW0.2}
\]

For every input of the SP key, the parameters AB (Input polarity) and the NW (Anti-chattering timer) are displayed.

4) Input the parameter AB1 to change the input port to a normally closed port.

\[
\text{AB0;} \quad \text{NW0.2} \quad ?\text{AB1} \quad ?\_
\]

5) While the prompt is “?”, input “?” for the confirmation of the change of port polarity.

\[
\text{SP} \quad \text{SP} \quad ?\quad \text{FNSVON;} \quad \text{AB1;} \quad \text{NW0.2}
\]

Every one input of the SP key reads out the parameters FN, AB, and NW in sequence. Confirm that the parameter AB is changed to AB1.

6) Input the ENT key to terminate the editing while the prompt “?” is on the display.

\[
\text{NW0.2} \quad ?\quad :\_
\]

7) Input the command SV (Servo on) to make the Motor possible to get into “Servo on”.

\[
\text{SV} \quad :\_
\]
3.4. Monitoring Control Input/Output

- The Monitor IO (Input/Output monitor) monitors the state of remote inputs and outputs of the CN6 interface connector.

- Figure 3-2 “Monitor of the control Input/Output functions and their state” below shows the relation between the function of control inputs and outputs of the Driver Unit and the Monitor IO. You can monitor the state of each part using Monitor IO0 to IO4 accordingly.

  ◊ This section describes the IO4, the monitor of Input/Output of the CC-Link and the BS, the monitor of status of interface. Refer to “Appendix 1: Check of the Input/Output Signal” for other monitors.

- Besides the above way of monitoring, “ON and OFF” of each function can be monitored by inputting Control I/O Function.

**Fig. 3-2: Monitor of the control I/O functions and their state**

![Diagram of Monitor of the control I/O functions and their state]

- **Command PI**: Editing Input port (PI0 is fixed to EMST Input (Emergency stop).)
  - **FN**: Input function
  - **AB**: Input polarity
  - **NW**: Anti-chattering timer

- **Monitor IO0**: Input function
  - EMST, ACLR, etc.

- **Monitor IO1**: Input function
  - 0.0 to 1,000.0 [ms]

- **Monitor IO2**: Input function
  - Control priority

- **Monitor IO3**: Input function
  - Output function: DRDY, WRN, etc.

- **Command PO**: Editing Output port (PO0 is set to the output DRDY (Driver Unit ready) or the output NRM (Normal)).
  - **FN**: Output function
  - **GC**: Output logic
  - **ST**: In-position stability timer

- **Monitor IO0**: Output function
  - 0: Positive logic
  - 1: Negative logic

- **Monitor IO1**: Output function
  - 0.0 to 1,000.0 [ms]

- **Monitor IO2**: Output function
  - 0: A (Normally open)
  - 1: B (Normally closed)
3.4.1. Monitoring the State of Remote Inputs/Outputs: Monitor IO4

- The monitor reports the current state of remote Inputs and Outputs of the CN6 Interface connector.
  - Input as “IO4/RP”.
  - Input the **BS** key to stop real-time readout.

*Fig. 3-3: Readout Example of Monitor IO4*

![IO4 Readout Example](image)

*Table 3-2: Readout format of Monitor IO4*

<table>
<thead>
<tr>
<th>Guide</th>
<th>G</th>
<th>F</th>
<th>E</th>
<th>D</th>
<th>C</th>
<th>B</th>
<th>A</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of remote I/O</td>
<td>RY (m+1)</td>
<td>RY m15</td>
<td>RY m14</td>
<td>RY m13</td>
<td>RY m12</td>
<td>RY m11</td>
<td>RY m10</td>
<td>RY m9</td>
<td>RY m8</td>
<td>RY m7</td>
<td>RY m6</td>
<td>RY m5</td>
<td>RY m4</td>
<td>RY m3</td>
<td>RY m2</td>
<td>RY m1</td>
<td>RY m0</td>
</tr>
<tr>
<td>Port code (Shipping set)</td>
<td>PI16 (DIR)</td>
<td>PI15 (JOG)</td>
<td>PI14 (PRG7)</td>
<td>PI13 (PRG6)</td>
<td>PI12 (PRG5)</td>
<td>PI11 (PRG4)</td>
<td>PI10 (PRG3)</td>
<td>PI09 (PRG2)</td>
<td>PI08 (PRG1)</td>
<td>PI07 (PRG0)</td>
<td>PI06 (STF)</td>
<td>PI05 (RUN)</td>
<td>PI04 (SVCR)</td>
<td>PI03 (not used)</td>
<td>PI02 (not used)</td>
<td>PI01 (ACLR)</td>
<td>PI00 (EMST)</td>
</tr>
<tr>
<td>Name of remote I/O</td>
<td>-</td>
<td>RX m7</td>
<td>RX m6</td>
<td>RX m5</td>
<td>RX m4</td>
<td>RX m3</td>
<td>RX m2</td>
<td>RX m1</td>
</tr>
<tr>
<td>Port code (Shipping set)</td>
<td>Reserved</td>
<td>PO07 (NEARA)</td>
<td>PO06 (IP02)</td>
<td>PO05 (B/S)</td>
<td>PO04 (SYST)</td>
<td>PO03 (not used)</td>
<td>PO02 (O/FNA)</td>
<td>PO01 (W)</td>
</tr>
</tbody>
</table>
3.4.2. Monitoring State of the CC-Link Interface: Monitor BS

- Monitor BS reports the current state of the CC-Link Interface.
  - Input as “BS/RP”.
  - Input the BS key to stop real-time readout.

Fig. 3-4: Readout example of Monitor BS

![Readout example of Monitor BS](image)

Table 3-3: Readout of the Monitor BS

<table>
<thead>
<tr>
<th>Monitoring Item</th>
<th>F</th>
<th>E</th>
<th>D</th>
<th>C</th>
<th>B</th>
<th>A</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error in change of setting station number</td>
<td>Error in change of Baud rate switching error</td>
<td>Error in checking of error occurrence</td>
<td>Baud rate SW error</td>
<td>Error on interface checking</td>
<td>Error in CPU</td>
<td>CPU STOP error</td>
<td>Error in number of RY data</td>
<td>Error in time over setting</td>
<td>Error in time over</td>
<td>Error in number of RY data</td>
<td>Error in time over setting</td>
<td>Error in number of slave station</td>
<td>Error in baud rate setting</td>
<td>Error in station number setting</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.5. Function Assignment to Control Inputs/Outputs

- You may change the function assignment to the ports of CN6 (Interface connector) and CN2 (Control I/O connector). (Excludes certain port.)
  - Counter change to an expanded function
  - Transfer a previously assigned function to other port.
  - Mask the function of an unused port.

- This makes you to be able to assign a required function with the desired arrangement.
  - In addition to the function assignment, the input signals from the CN2 connector can change the contacts of every port, and can insert filters.

- The PI0 and PO0 are dedicated ports for the signals fundamental to the safety function. There are following restrictions respectively.
  - You cannot change the function setting of Input EMST (Emergency stop) of the Port PI0 (RYm0).
  - The Output NRM (Normal) is the only function that can replace the setting of the Output DRDY “Driver Unit ready” of the Port PO0 (RXm0).

- The input signals can be gotten from either one of the CN6 or the CN2 connector in accordance with the operation mode (Fieldbus mode or Maintenance mode).
  However, there are following exceptions.
  - The port assigned to the Input EMST (Emergency stop) regards an input of both CN2 and CN6 connectors as “Emergency stop”. This means that the system gets in the emergency stop state by either one of them.
  - The port assigned to Input OTP/OTM (Over travel limit switch position) or Input HLS (Home position limit switch) function accepts only the input from the CN2 connector regardless the operation mode.
3. Operation

3.5.1. Function of Control Inputs

- You may assign a function to each control input port. This feature, for example, permits you to change a function preset to an input port to other function, or to switch to one of expanded functions.

◊ In addition to assigning functions to the input signals of the CN2 connector, you may change the port polarity or insert the filter to each control input port.

◊ When the same function is assigned to different ports, the logical sum of each input will be the input to the Driver Unit (When the one of the ports becomes effective, the function becomes effective).

◊ If you require a function not included in the shipping set, you may switch a preset function to the required one. If the program does not use 256 channels, you may assign the function to an idle input port of PRG0 to 7.

Table 3-4: Remote Input ports and assigned function

<table>
<thead>
<tr>
<th>Input</th>
<th>Port code</th>
<th>Signal code</th>
<th>Signal name</th>
<th>Function</th>
<th>Logic in the CN6 (shipping set)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RYm0</td>
<td>PI0</td>
<td>EMST</td>
<td>Emergency stop</td>
<td>Terminates a positioning and stops the Motor by the dynamic brake</td>
<td>0: Normal 1: Emergency stop</td>
</tr>
<tr>
<td>RYm1</td>
<td>PI1</td>
<td>ACLR</td>
<td>Alarm clear</td>
<td>Clears warning</td>
<td>0: Clears warning</td>
</tr>
<tr>
<td>RYm2</td>
<td>PI2</td>
<td>– (Reserved)</td>
<td>*1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Ym3</td>
<td>PI3</td>
<td>– (Reserved)</td>
<td>*1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>RYm4</td>
<td>PI4</td>
<td>SVON</td>
<td>Servo ON</td>
<td>Activates the Motor servo</td>
<td>0: Servo OFF 1: Servo ON</td>
</tr>
<tr>
<td>RYm5</td>
<td>PI5</td>
<td>RUN</td>
<td>Program start</td>
<td>Starts the program specified by the PRG input</td>
<td>0 –&gt; 1 Starts program</td>
</tr>
<tr>
<td>RYm6</td>
<td>PI6</td>
<td>STP</td>
<td>Stop</td>
<td>Stops an operation and exits out the program</td>
<td>0: Operation permitted 1: Starts slowing down, Operation prohibited</td>
</tr>
<tr>
<td>RYm7</td>
<td>PI7</td>
<td>PRG0</td>
<td>Internal program channel selection 0</td>
<td>Select a channel to be executed (0 to 255) by a combination of ON and OFF of the internal program channel selection (0 to 7).</td>
<td></td>
</tr>
<tr>
<td>RYm8</td>
<td>PI8</td>
<td>PRG1</td>
<td>Internal program channel selection 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RYm9</td>
<td>PI9</td>
<td>PRG2</td>
<td>Internal program channel selection 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RYmA</td>
<td>PI10</td>
<td>PRG3</td>
<td>Internal program channel selection 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RYmB</td>
<td>PI11</td>
<td>PRG4</td>
<td>Internal program channel selection 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RYmC</td>
<td>PI12</td>
<td>PRG5</td>
<td>Internal program channel selection 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RYmD</td>
<td>PI13</td>
<td>PRG6</td>
<td>Internal program channel selection 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RYmE</td>
<td>PI14</td>
<td>PRG7</td>
<td>Internal program channel selection 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RYmF</td>
<td>PI15</td>
<td>JOG</td>
<td>Jogging</td>
<td>Start and stop of jogging</td>
<td>0: Start deceleration 1: Start acceleration</td>
</tr>
<tr>
<td>RY(m+1)F</td>
<td>PI16</td>
<td>DIR</td>
<td>Jogging direction</td>
<td>Specifies jogging direction</td>
<td>0: + direction 1: - direction</td>
</tr>
</tbody>
</table>

* The shipping set assigns the function codes of OTP and OTM to the port numbers of PI2 and PI3 respectively. They are the dedicated input signals from the CN2 control I/O connector and, thus, the input from the CC-Link to the port assigned to the OTP or OTM function is invalid.

⚠ Caution: Please follow the instruction manual for custom made products with special Input/Output signals.

- The table above shows the shipping set.
### Table 3-5: Extended input function

<table>
<thead>
<tr>
<th>Input</th>
<th>Port code</th>
<th>Signal code</th>
<th>Signal name</th>
<th>Function</th>
<th>Logic in the CN6</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>–</td>
<td>HLD</td>
<td>Hold</td>
<td>Holds an operation and program execution</td>
<td>0: Normal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1: Hold</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>ORD</td>
<td>Velocity override</td>
<td>Changes the operation velocity accordingly to the setting of ORD</td>
<td>0: Normal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1: Over ride</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>IOFF</td>
<td>Integration OFF</td>
<td>Integration OFF</td>
<td>0: Normal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1: Integration OFF</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>HOS</td>
<td>Home Return start</td>
<td>Starts the Home Return</td>
<td>0 → 1: Start the Home Return</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>HLS*</td>
<td>Home position limit</td>
<td>The motor is in the proximity of the home position</td>
<td>–</td>
</tr>
</tbody>
</table>

*HLS: The port assigned to the HLS function becomes the dedicated input signal from the CN2: control Input/Output connector and, thus, the input from the CC-Link to the HLS port is invalid.
3. Operation

3.5.2. Function of Control Outputs

- You can set the function of control outputs and the In-position stability timer. You may change the preset input port function to other function, or to switch to one of expanded functions.
  - You may assign the same function to multiple ports.
  - If you require a function other than the shipping set, you may switch a preset function to a required one. For example, you may increase the number of idle ports by combining the Output DRDY and WRN into the Output NRM, or the Output OTPA and OTMA into the Output OTXA, to increase the number of idle ports.

Table 3-6: Remote output ports and assigned function

<table>
<thead>
<tr>
<th>Output</th>
<th>Port code</th>
<th>Signal code</th>
<th>Signal name</th>
<th>Function</th>
<th>Logic in the CN6</th>
</tr>
</thead>
<tbody>
<tr>
<td>RXm0</td>
<td>PO0</td>
<td>DRDY</td>
<td>Driver Unit ready</td>
<td>Reports that the Motor is ready to rotate (Those pins are open when the Motor is not ready, or an alarm occurs)</td>
<td>0: Alarm 1: Normal</td>
</tr>
<tr>
<td>RXm1</td>
<td>PO1</td>
<td>WRN</td>
<td>Warning</td>
<td>Reports abnormality in the system</td>
<td>0: Normal 1: Warning</td>
</tr>
<tr>
<td>RXm2</td>
<td>PO2</td>
<td>OTPA</td>
<td>Over travel limit (+ direction) detected</td>
<td>Reports detection of over travel (software and hardware ) in the plus direction</td>
<td>0: Normal 1: Over travel limit detected (+ direction)</td>
</tr>
<tr>
<td>RXm3</td>
<td>PO3</td>
<td>OTMA</td>
<td>Over travel limit (- direction) detected</td>
<td>Reports detection of over travel (software and hardware) in the minus direction</td>
<td>0: Normal 1: Over travel limit detected (- direction)</td>
</tr>
<tr>
<td>RXm4</td>
<td>PO4</td>
<td>SVST</td>
<td>Servo state</td>
<td>Reports the state of servo</td>
<td>0: Servo OFF 1: Servo ON</td>
</tr>
<tr>
<td>RXm5</td>
<td>PO5</td>
<td>BUSY</td>
<td>In-operation</td>
<td>Reports the state of positioning operation</td>
<td>0: Idle 1: In operation</td>
</tr>
<tr>
<td>RXm6</td>
<td>PO6</td>
<td>IPOS</td>
<td>In-position</td>
<td>Reports the condition of positioning error and the positioning operation</td>
<td>0: Imperfect positioning or Loss of the targetposition 1: In-position and holding the target position</td>
</tr>
<tr>
<td>RXm7</td>
<td>PO7</td>
<td>NEARA</td>
<td>Target proximity A</td>
<td>Reports that the Motor is approaching to the destination</td>
<td>0: Not detected 1: Proximity to the target position</td>
</tr>
</tbody>
</table>

⚠️ Caution: Please follow the instruction manual for custom made products with special Inputs/Outputs signals.
  - The table above shows the shipping set.
### Table 3-7: Function of extended output

<table>
<thead>
<tr>
<th>Output Port code</th>
<th>Signal code</th>
<th>Signal name</th>
<th>Function</th>
<th>Logic in the CN6</th>
</tr>
</thead>
<tbody>
<tr>
<td>– –</td>
<td>NEARB</td>
<td>Target proximity B</td>
<td>Reports that the Motor is approaching to the destination</td>
<td>0: Not in the proximity 1: The Motor is nearing to the target position</td>
</tr>
<tr>
<td>– –</td>
<td>ZONEA</td>
<td>Zone A</td>
<td>Reports the Motor has entered in a preset zone</td>
<td>0: Not active 1: The limit is activated</td>
</tr>
<tr>
<td>– –</td>
<td>ZONEB</td>
<td>Zone B</td>
<td>Reports the Motor has entered in a preset zone</td>
<td>0: Not active 1: The limit is activated</td>
</tr>
<tr>
<td>– –</td>
<td>ZONEC</td>
<td>Zone C</td>
<td>Reports the Motor has entered in a preset zone</td>
<td>0: Not active 1: The limit is activated</td>
</tr>
<tr>
<td>– –</td>
<td>TEU</td>
<td>Position error, under</td>
<td>Reports the position error</td>
<td>0: Not active 1: The error is equal or under the threshold</td>
</tr>
<tr>
<td>– –</td>
<td>TEO</td>
<td>Position error, over</td>
<td>Reports the position error</td>
<td>0: Not active 1: The error is equal or under the threshold</td>
</tr>
<tr>
<td>– –</td>
<td>TVU</td>
<td>Velocity error, under</td>
<td>Reports the velocity error</td>
<td>0: Out of the limit 1: The error is equal or under the threshold</td>
</tr>
<tr>
<td>– –</td>
<td>TVO</td>
<td>Velocity error, over</td>
<td>Reports the velocity error</td>
<td>0: Out of the limit 1: The error is equal or under the threshold</td>
</tr>
<tr>
<td>– –</td>
<td>TTU</td>
<td>Torque command, under</td>
<td>Reports the state of torque output command</td>
<td>0: Out of the limit 1: The command is equal or under the threshold</td>
</tr>
<tr>
<td>– –</td>
<td>TTO</td>
<td>Torque command, over</td>
<td>Reports the state of torque output command</td>
<td>0: Out of the limit 1: The command is equal or over the threshold</td>
</tr>
<tr>
<td>– –</td>
<td>TJU</td>
<td>Thermal loading, under</td>
<td>Reports the state of thermal loading</td>
<td>0: Out of the limit 1: The thermal loading is equal or under the threshold</td>
</tr>
<tr>
<td>– –</td>
<td>TJO</td>
<td>Thermal loading, over</td>
<td>Reports the state of thermal loading</td>
<td>0: Out of the limit 1: The thermal loading is equal or over the threshold</td>
</tr>
<tr>
<td>– –</td>
<td>OTXA</td>
<td>Travel limit switch, ± direction</td>
<td>Reports the detection of limit switch (software and hardware) in + or – direction</td>
<td>0: Out of the limit 1: The limit activated</td>
</tr>
<tr>
<td>– –</td>
<td>NRM</td>
<td>Normal</td>
<td>Reports the detection of alarm or warning</td>
<td>0: Alarm or warning 1: Normal</td>
</tr>
<tr>
<td>– –</td>
<td>HOME</td>
<td>Home Return completed</td>
<td>Reports that the Motor has completed the Home Return and is on the Home position</td>
<td>0: Home Return is not completed, or the commanded position is not the Home position 1: Home Return is completed and the commanded position is the Home position</td>
</tr>
<tr>
<td>– –</td>
<td>HCMP</td>
<td>Home position defined</td>
<td>Reports that the Home position has been defined</td>
<td>0: The home position is not defined 1: The Home position is defined</td>
</tr>
</tbody>
</table>
3. Operation

3.5.3. Editing Coptrl Inputs/Outputs

3.5.3.1. Editing Control Inputs

- The command PI (Edit input port) edits the function setting to the control input ports.

- When the editing mode of control input is established by the command PI, the setting of the parameters FN (Port function) and NW (Anti-chattering timer) become effective.

  ◊ You must deactivate the Motor servo for these settings.
  ◊ The settings by the command PI become immediately effective and thus, the reboot of the power is not necessary.
  ◊ You may set the parameter AB (Input port polarity) or NW (Anti-chattering timer) to a port. However, they are only effective for the connector CN2: control I/O connector but not for the remote inputs of the CN6: interface connector.

- The control input port PI0 is dedicated to the safety function input. For this reason, the parameter FN (Port function) fixes the Input EMST (Emergency stop) to the port.

  ◊ You may set the parameter AB or NW to the port. However, the function is only effective for the CN2 connector.

- The Monitor IO (Input/Output monitor) monitors the input state of each function. Refer to “3.4. Monitoring of Control Input/Output” for details.

Table 3-8: Editing command for control input port

<table>
<thead>
<tr>
<th>Category</th>
<th>Edit code</th>
<th>Function</th>
<th>Default</th>
<th>Data range</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Editing Command</td>
<td>PI</td>
<td>Edits control input function</td>
<td>–</td>
<td>0 to 16</td>
<td>Port</td>
</tr>
<tr>
<td></td>
<td>★ PI/RS</td>
<td>Resets a designated input port. (Example: PI1/RS)</td>
<td>–</td>
<td>0 to 16</td>
<td>Port</td>
</tr>
<tr>
<td></td>
<td>★ PI/CL</td>
<td>Resets all control input ports.</td>
<td>–</td>
<td>Resets all control input ports to the shipping set</td>
<td>–</td>
</tr>
<tr>
<td>Parameter in the port</td>
<td>FN</td>
<td>Inputs a port function</td>
<td>– *1</td>
<td>FN + [Function] sets the function.</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>AB *2</td>
<td>Inputs port polarity</td>
<td>– *1</td>
<td>0: Normally open 1: Normally closed</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>NW *2</td>
<td>Anti-chattering timer</td>
<td>0.2</td>
<td>0.0 to 1 000.0</td>
<td>ms</td>
</tr>
<tr>
<td>Monitor</td>
<td>TPI</td>
<td>Reads out an edited input port function.</td>
<td>–</td>
<td>0 to 16</td>
<td>Port</td>
</tr>
<tr>
<td></td>
<td>TPI/AL</td>
<td>Reads out all input functions.</td>
<td>–</td>
<td>Reads out all settings of control input port</td>
<td>–</td>
</tr>
</tbody>
</table>

*1: The default differs by the port number.
*2: The setting is only effective for the CN2 connector.

★: Requires to input a password.
Setting function by direct input

- Refer to the following, for an example, how to change the function of the input port PI14 to the “Input HLD (Hold)” from the “Input PRG7 (Internal program channel selection 7)”.

  1) Turn the Motor servo off by the command MO (Motor off).

```
MO
```

2) An input of the port number by the command PI (Port number: PI14) reads out the parameter FN.
   (“PRG7” is assigned to the Input port PI14 as the shipping set)

```
P I 1 # 4 > EN T
```

Input the **SP** key to read out the parameters AB and NW.

3) Change the function to the Input HLD.

```
F N H L D EN T
```

Set parameters AB and NW in a similar manner above.

4) For the confirmation of the setting, input “?” in the state of prompt “?”.

```
? EN T
```

Input the **SP** key to read out the parameters FN, AB and NW.

5) Input the **ENT** key to terminate editing while the prompt “?” is on the screen.

```
EN T
```

6) Input the command SV (Servo on) to make the Motor ready for the input of SVON.
Selection and setting of function

- Select and set the control input function by “/AJ” option.

The procedure shown on “Fig. 3-5: Selection and setting of control input” changes the function of input port PI14 to the “Input HLD (Hold)” from the “Input PRG7 (Internal program channel selection 7)”. 

**Fig. 3-5: Selection and setting of control input**

```
#MO

#PI14

FNPRG7;

AB0;

NW0.2;

?FN/AJ

STEP

FN

?FN

#

ACLR_

PRG7_

HLD_

---

Turn the servo off.

Start to edit the port 14.

Indicates the current function setting

Press the SF key to indicate the parameters set to the channel 7.

Set the screen for selection of function.

Use the [+ or -] key to select the Input HLD.

Press the ENT key when the Input HLD is selected

A few keystrokes of the ENT key completes editing the port.
```
3.5.3.2. Editing Control Output

- The command PO (Edit output port) edits the function setting to the control output ports.

- When the editing mode of control output is established by the command PO, the setting of the parameters FN (Port function) and ST (Anti-chattering timer) become effective.
  - The setting by the command PO will be immediately effective, thus making the reboot of power unnecessary.
  - You may be set the parameter GC (Output logic) to a function. However, it is not effective to the remote Inputs and Outputs of the CN6 connector.

- The control output port PO0 is dedicated to the safety function output. For this reason, the parameter FN (Port function) must be set to either one of the output port of Output DRDY (Driver Unit ready) or Output NOR (Normal).
  - You cannot change the function of the port of parameters GC and ST.

- The Monitor IO (Input/Output monitor) reports the input condition of each function. Refer to “3.4. Monitoring Control Input/Output” for details.

- The command OP (Forcible output) forcibly changes the setting of control output ports. Refer to “3.5.3.4. Forcible Change in Setting Output Port Function”.

Table 3-9: Editing command of control output port

<table>
<thead>
<tr>
<th>Category</th>
<th>Edit code</th>
<th>Function</th>
<th>Default</th>
<th>Data range</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Editing Command</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO</td>
<td></td>
<td>Edit control output function</td>
<td>–</td>
<td>0 to 7 port</td>
<td></td>
</tr>
<tr>
<td>★ PO/RS</td>
<td></td>
<td>Reset a designated output port</td>
<td>–</td>
<td>0 to 7 port</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Example: PO1/RS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>★ PO/CL</td>
<td></td>
<td>Reset all control output ports.</td>
<td>–</td>
<td>Resets all control output ports to the shipping set</td>
<td>–</td>
</tr>
<tr>
<td>Parameter in the port</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FN</td>
<td></td>
<td>Output port function</td>
<td>–*1</td>
<td>Function sets the function</td>
<td>–</td>
</tr>
<tr>
<td>GC *2</td>
<td></td>
<td>Output port polarity</td>
<td>–</td>
<td>0: Normally open 1: Normaly closed</td>
<td></td>
</tr>
<tr>
<td>ST</td>
<td></td>
<td>Anti-chattring timer</td>
<td>–</td>
<td>0.0 to 1 000.0 ms</td>
<td></td>
</tr>
<tr>
<td>Monitor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPO</td>
<td></td>
<td>Reads out an edited output port</td>
<td>0.0</td>
<td>0 to 7 port</td>
<td></td>
</tr>
<tr>
<td>TPO/AL</td>
<td></td>
<td>Reads out all output functions</td>
<td>–</td>
<td>Reads out all settings of control output port</td>
<td>–</td>
</tr>
</tbody>
</table>

★: Requires to input a password.
*1: The default differs by the port number.
*2: The setting is only effective for the CN2 connector.
Function setting by direct input

- Refer to the following, for an example, how to change the function of the output port PO7 to “Output ZONEA (Zone A)” from “Output NEARA (Near position A)”.

1) Specify the output port number by the command PO to read out the setting of parameter FN.
   (The function of “NEARA” is specified to the output port as the shipping set)

   ![PO7 FNNEARA; GC0; ST0.0]

   Input the \textbf{SP} key to scroll down to the parameters GC and ST.

2) Change the function to the output “ZONEA”.

   ![FNZONEA]

   Set the parameters GC and ST as the same manner above.

3) Input “?” while the prompt is “?” to confirm the settings.

   ![FNZONEA; GC0; ST0.0]

   Input the \textbf{SP} key to scroll down to the parameters FN, GC and ST.

4) Input the \textbf{ENT} key to terminate the editing.

   ![ST0.0]
Selection and setting of output function

- Select and set the control input function by “/AJ” (option).

The procedure shown on “Fig. 3-6: Selection and setting of output function” change the function of the port P14 to “Output ZONE A (Zone A)” from “Output NEARA (Near position A)”.

**Fig. 3-6: Selection and setting of output function**

- **Start to edit the port 7.**
  - The screen displays the current setting to the port 7.
  - Press the SP key to indicate the parameters set to the port.
  - Start the screen for selection of function.
- **Press the ENT key when the Output ZONEA is selected.**
  - A few keystrokes of the ENT key completes editing the port.
3. Operation

3.5.3.3. Masking the Function of Control Inputs/Outputs

- Refer to the following, for an example, how to change the function of input port P16 from “Input STP (Stop)” to “NONE (No function: Masked)

1) Input the command “MO (Motor off)” to put the Motor in the state of “Servo off”.

```
MO
```

2) Specify an input port number by the command PI (Edit control input) to read out the parameter FN (Input function).

```
PI6
```

Input the SP key to scroll down to the parameter NW (Anti-collision timer).

3) Input as below to change the function to “NONE (No function: Masked)”.

```
AB0; NW0.2_
```

4) For the confirmation, input “?” while the prompt is “?”.

```
??
```

Input the SP key to scroll down to the parameter NW, through the parameters FN and AB.

5) Input the ENT key to terminate the editing while the prompt “?” is on the line.

```

```

6) Input the command SV (Servo ON) to make the Motor ready for “Servo on”.

```
SV
```

--- 3-18 ---
3.5.3.4. Forcible Change in Setting Control Output Port Function

- The command OP (Compulsive output) forcibly changes the state of the output ports PO0 to PO7 of the connector CN2: control Input/Output connector and the remote outputs of the connector CN6: interface connector.

- This feature is useful for checking the interface with the master controller.

- And now for an example, forcibly change the output port PO0 to 0 (open in case of the connector CN2). The function of the PO0 is “Output DRDY (Driver Unit ready)” and if its output is 0 (zero), this output port is open to report occurrence of an alarm. This feature can be used for checking if the master controller could detect the abnormal.

1) According to “Table 3-6: Remote output ports and assigned function,” the port name of the remote output RXm0 is PO0.

2) Input the password as “/NSK ON”:

```
NSK ON
```

3) Forcibly make the PO0 to 0 and if leaving others unchanged, input as “OPXXXXXXX0”:

```
OPXXXXXXX0
```

The port PO0 is forced to change to 0.

Input the BS key to cancel “Forcible change”.

```
TO ABORT, PUSH [BS]_`
(Blank Page)
4. Alarm and Warning

4.1. Cause and Remedy of Alarm and Warning

4.1.1. C4: Fieldbus Error

- The Driver Unit gives the alarm if an error in the built-in CC-Link interface unit occurred and disabled continuous communication.
- The alarm does not report an abnormality of the whole fieldbus.

Table 4-1: Status when an error in the fieldbus is detected

<table>
<thead>
<tr>
<th>7 seg LED</th>
<th>Command TA: Tell Alarm Status</th>
<th>Warning/Alarm</th>
<th>Motor state</th>
<th>DRDY output</th>
<th>WRN output</th>
<th>OTPA output</th>
<th>History</th>
<th>Clear</th>
</tr>
</thead>
<tbody>
<tr>
<td>C4</td>
<td>C4&gt;Fieldbus Error</td>
<td>Fieldbus error</td>
<td>Servo off</td>
<td>0</td>
<td></td>
<td></td>
<td>O</td>
<td>×</td>
</tr>
</tbody>
</table>

- The table below shows the history of alarm occurrence read out by the command TA/HI (Tell alarm history) and their remedy.

Table 4-2: Cause and remedy of fieldbus error

<table>
<thead>
<tr>
<th>Alarm history</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>C4-0</td>
<td>Two slave stations are not connected</td>
<td></td>
</tr>
<tr>
<td>C4-1</td>
<td>Error in verifying the manufacturer code</td>
<td></td>
</tr>
<tr>
<td>C4-2</td>
<td>Error in verifying machine code and/or software version</td>
<td></td>
</tr>
<tr>
<td>C4-3</td>
<td>Busy for writing the data</td>
<td></td>
</tr>
<tr>
<td>C4-4</td>
<td>Time over against the setting</td>
<td></td>
</tr>
</tbody>
</table>

- The Driver Unit may be defective if the alarm occurs again after the reboot of the system. Follow the “Appendix 4: Procedure manual for replacing the EDC Driver Unit Replacing” of the instruction manual.
4.1.2. C5: Fieldbus Warning

- This warning reports an error in the fieldbus that is recoverable.
  - The warning reports the error in setting of station number or the baud rate, and the line breakage of the fieldbus board.

<table>
<thead>
<tr>
<th>Table 4-3: Status when the fieldbus warning</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 seg LED</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>C5</td>
</tr>
</tbody>
</table>

*1: If the motor is rotating when the warning is reported, it stops after the executing cycle is completed.

- The table below shows the history of alarm occurrence read out by the command TA/HI (Tell alarm history) and their remedy.

<table>
<thead>
<tr>
<th>Table 4-4: Cause and remedy of fieldbus warning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm history</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>C5—0</td>
</tr>
<tr>
<td>C5—1</td>
</tr>
<tr>
<td>C5—2</td>
</tr>
</tbody>
</table>

(1) Input of ACLR (Alarm clear), or Command CL (Alarm clear) clears the warning.
Worldwide Sales Offices

NSK LTD., HEADQUARTERS, TOKYO, JAPAN
www.nsk.com
JAPAN: +81-3-5779-7227
KOBEC: +81-3-5779-7227
GLOBAL AFTERMARKET DEPARTMENT
TEL: +81-3-5779-7253
PRECISE MACHINE DEPARTMENT
TEL: +81-3-5779-7163
MECHATRONICS BUSINESS DEPARTMENT
TEL: +81-3-5779-7107
AMERICAS BUSINESS DEVELOPMENT DEPARTMENT
TEL: +81-3-5779-7113
Africa
South Africa:
NSK SOUTH AFRICA (PTY) LTD.
Johannesburg Tel 011-458-3600
Asia and Oceania
Australia:
NSK AUSTRALIA PTY. LTD.
Melbourne Tel 03-9785-4400
China:
NSK HONG KONG LTD.
Hong Kong Tel 02793-9939
Shenzhen Tel 0755-2590486
KUNSHAN NSK CO., LTD.
Kunshan Tel 0512-2371-1654
NSK NEEDLE BEARINGS (SHANGHAI) CO., LTD.
Jiangsu Tel 0512-5355-1111
NSK STEERING SYSTEMS DONGGUAN CO., LTD.
Dongguan Tel 0769-2766-0800
NSK (CHINA) RESEARCH & DEVELOPMENT CO., LTD.
Jiangsu Tel 0512-6798-3000
NSK (SHANGHAI) TRADING CO., LTD.
Jiangsu Tel 0512-6798-3000
NSK (CHINA) INVESTMENT CO., LTD.
Jiangsu Tel 021-5788-1000
Beijing Tel 010-650-8761
Tianjin Tel 022-2439-5230
Changchun Tel 0431-8489-4822
Shenyang Tel 024-2334-2886
Dalian Tel 0411-480-6166
Nanning Tel 0771-887-3477
Guangzhou Tel 020-3866-6303
Shenzhen Tel 0755-2781-0302
Linyi Tel 0634-8637-4456
Qingdao Tel 0532-8066-3800
Chaozhou Tel 0754-2826-3923
NSK CHINA SALES CO., LTD.
Jiangsu Tel 021-5796-7000
India
RANE NSK STEERING SYSTEMS LTD.
Chennai Tel 044-476-6061
NSK INDIA SALES CO. LTD.
Chennai Tel 044-2867-8600
Gurugram Tel 0124-4104-260
KolKata Tel 033-402-2062
Mumbai Tel 022-2384-7676
NSK-ARG BEARINGS LTD.
Chennai Tel 044-2716-3000
Indonesia:
PT. NSK INDONESIA
Jakarta Tel 021-292-3654
Korea:
NSK KOREA CO., LTD.
Seoul Tel 02-3287-0300
Malaysia:
NSK MALAYSIA (MALAYSIA) SDN.BHD.
Shah Alam Tel 03-7803-8959
New Zealand:
NSK NEW ZEALAND LTD.
Auckland Tel 09-276-1100
Philippines:
NSK REPRESENTATIVE OFFICE
Tel 02-893-8363
Singapore:
NSK INTERNATIONAL (SINGAPORE) PTE LTD
Singapore Tel 6498-8000
Singapore:
NSK PRECISION (PRIVATE) LTD.
Singapore Tel 6498-8000
Taiwan:
TAIWAN NSK PRECISION CO., LTD.
Taipei Tel 02-2509-3305
THAILAND:
NSK PRECISION CO., LTD.
Bangkok Tel 089-320-2555
SIAM NSK STEERING SYSTEMS CO., LTD.
Chachoengsao
THAILAND:
NSK REPUBLIC OF KOREA
Tel 03-8822-7607
EUROPE:
NSK REPRESENTATIVE OFFICE
Ho Chi Minh City
EUROPE:
NSK LUBRICATIONS (EUROPEAN HEADQUARTERS)
Maidenhead
Tel 01828-594-000
FRANCE:
NSK FRANCE S.A.S.
Paris Tel 01-59-57-39-39
GERMANY:
NSK DEUTSCHLAND GMBH
Nuremberg
Tel 0911-7210-610
ITALY:
NSK ITALIA S.P.A.
Milano
Tel 0293-5191
Poland:
NSK EUROPE LTD.
Warsaw Tel 022-557-9009
NSK EUROPEAN TECHNOLOGY CENTER, POLAND OFFICE
Tel 022-564-1001
NSK STEERING SYSTEMS EUROPE POLAND SP.Z.O.O.
Klodzko
Tel 041-360-2649
NSK NEEDLE BEARING POLAND SP.Z.O.O.
Kędzierzyn
Tel 041-360-2649
NSK POLSKA SP.Z.O.O.
Kodnica
Tel 041-360-2649
Spain:
NSK SPAIN S.A.
Barcelona Tel 93-437-5757
Turkey:
NSK TRADERS ORTA DOGU Tic. LTD. STI.
Istanbul Tel 0216-355-0398
United Kingdom:
NSK EUROPEAN TECHNOLOGY CENTRE
Napton Tel 0844-665-123
NSK UK LTD.
Newport Tel 0844-665-123
NSK PRECISION UK LTD.
Newark Tel 0844-665-123
NSK STEERING SYSTEMS EUROPE LTD.
Maidenhead
North and South America
NSK AMERICAS, INC. (AMERICAN HEADQUARTERS)
Argentina:
NSK ARGENTINA SRL
Buenos Aires
Brazil:
NSK BRASIL LTDA.
São Paulo
Canada:
NSK CANADA INC.
Kitchener
Canada
Mexiko:
NSK MEXICO S.A. DE C.V.
Medellín
United States of America:
NSK CORPORATION
Tel 770-931-7600
NSK AMERICAN TECHNOLOGY CENTER
Ann Arbor
NSK PRECISION AMERICA, INC.
Tel 734-731-7600
NSK DFVECHTEN SYSTEME AMERICA, INC.
Baltimore
NSK LATIN AMERICA, INC.
Miami
Tel 305-617-6605
(As of August 2011)
For the latest information, please refer to the NSK website.

NSK Ltd. has a basic policy not to export any products or technology designated as controlled items by export-related laws. When exporting the products in this brochure, the laws of the exporting country must be observed. Specifications are subject to change without notice and without any obligation on the part of the manufacturer. Every care has been taken to ensure the accuracy of the data contained in this brochure, but no liability can be accepted for any loss or damage suffered through errors or omissions. We will gladly acknowledge any additions or corrections.

For more information about NSK products, please contact: